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Abstract— Automatically synthesizing controllers for
continuous-state nonlinear stochastic systems, while giving
guarantees on the probability of satisfying a temporal
logic specification crucially depends on abstractions with
a quantified accuracy. For this similarity quantification,
approximate stochastic simulation relations are often used. To
handle the nonlinearity of the system effectively, we use finite-
state abstractions based on piecewise-affine approximations
together with tailored simulation relations that leverage the
local affine structure. We end this paper by synthesizing
a robust controller for a nonlinear stochastic Van der Pol
oscillator.

I. INTRODUCTION

The design of controllers for safety-critical systems, such
as airplanes, cars and power systems, requires guarantees
on their correct functioning. Although obtaining guarantees
on their behavior via analysis and verification is important,
many of these systems are difficult to analyze and verify as
they evolve over continuous spaces in a stochastic and gener-
ally nonlinear fashion. Therefore, we need methods that can
handle simultaneously complex safety-critical requirements,
large scale continuous states, and stochastic and nonlinear
state evolutions. Recent work [1], [2], has shown progress in
the design of methods based on temporal logic specifications
that can handle relevant safety specifications. Although these
approaches scale to, respectively, more complex specifica-
tions [1] and larger stochastic systems with continuous states
[2], they are still limited to linear or pseudo-linear stochastic
systems.

For the nonlinear stochastic difference equations con-
sidered in this work, less progress has been shown. Syn-
thesizing a provably correct controller that guarantees the
satisfaction of temporal logic specifications for nonlinear
stochastic systems remains a very challenging problem and
the amount of methods that exist is very limited. More
specifically, methods either focus on a very specific type of
specification [3]–[5] or use slope restrictions on the nonlin-
earity (pseudo-linearity) of the systems [2]. When focusing
on local behavior, many nonlinear systems behave almost
linear. Therefore, a widely adopted approach in classical
control is performing a piecewise-affine approximation of
the nonlinear system [6]–[8]. In this paper, we leverage
piecewise-affine approximations to synthesize a controller,
while simultaneously computing the satisfaction probability
of a temporal logic specification.
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Dutch Research Council (NWO).

To apply such a formal synthesis method, which has
guarantees, the continuous-state behavior of safety-critical
systems is often approximated by a finite-state model [9],
known as an abstraction. By quantifying the similarity be-
tween the original, continuous-state model and its finite-
state abstraction, it is possible to obtain guarantees on the
satisfaction of formal specifications. As in [1], [10], the
similarity or deviations in probability and output of stochastic
systems can be expressed using approximate simulation re-
lations [11]. In this work, we will use this theory, applicable
to both linear and nonlinear stochastic systems, and develop
tailored methods for the provably correct controller design
of nonlinear stochastic systems.

Literature. The existing methods for temporal logic veri-
fication and control of nonlinear stochastic systems can be
classified into abstraction-based and abstraction-free meth-
ods. As mentioned before, available results on abstraction-
based methods for nonlinear stochastic systems [2], [12],
[13] are either restricted in the type of systems or with
respect to the specification. More specifically, [2] is restricted
to systems satisfying strict dissipativity requirements that
are pseudo-linear, that is, systems whose nonlinearity has
a bounded slope. Furthermore, this method tends to yield
conservative results. The tool FAUST2 [12] can only handle
specifications with a finite horizon. Similarly, [13] can only
handle liveness or repeated reachability specifications. On the
other hand abstraction-free methods that directly synthesize
controllers for the continuous-state systems are generally
based on Barrier certificates [3]–[5] and are limited to safety
specifications.

The work on deterministic piecewise-affine (PWA) ap-
proximations is well established [6]–[8], [15] and has ap-
plications in multiple scientific domains [16]–[22]. Early
PWA approximation methods use a uniform partitioning
of the continuous state space [6], [15], [23], while more
recent methods consider the curvature or the variation of
the nonlinear functions [24]–[26].

As a first step to incorporate piecewise-affine approxima-
tions into the temporal logic control of stochastic systems, we
use the standard piecewise-affine approximation technique
based on Taylor series [27, Sec. 4.10 & 9.6]. Based on
this, we develop a method to synthesize a provably correct
controller for nonlinear stochastic systems that allows us to
apply computationally efficient methods similar to [28] to
locally quantify the probability deviation, while maintaining
a global output deviation. To achieve this, we construct
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a local affine approximation of the nonlinear dynamics,
quantify the error of this approximation and construct a
piecewise-affine finite-state abstraction for the complete state
space (Section III). In Section IV, we discuss how to go
from local error dynamics to a global similarity quantification
by defining a piecewise simulation relation. Next, we adjust
the dynamic programming mapping from [29] to compute
a robust satisfaction probability of the temporal logic spec-
ification (Section V). Finally, we design a controller for a
stochastically perturbed Van der Pol Oscillator and discuss
the results in Section V.

II. PROBLEM FORMULATION AND APPROACH

For a given set X in Euclidean space1, the Borel
measurable space is denoted as (X,B(X) with B(X) the
σ-algebra of the Borel sets [30]. A probability measure P
over this space has realizations x ∼ P with x ∈ X. The set
of probability measures on the measurable space (X,B(X)
is denoted by P(X). The weighted two-norm ||x||D is
defined as ||x||D =

√
x>Dx. Furthermore, IN denotes the

identity matrix of size RN×RN . The Minkowski sum of two
sets A and B is defined as A⊕B := {a+ b | a ∈ A, b ∈ B}.

A. Preliminaries

Model. Consider a system whose behavior can be modeled
by a discrete-time nonlinear stochastic difference equation

M :

{
xt+1 = f(xt) +But + wt

yt = Cxt, ∀t ∈ {0, 1, 2, . . . } ,
(1)

with state x ∈ X ⊆ Rnx , input u ∈ U ⊆ Rnu disturbance
w ∈ W ⊆ Rnw and output y ∈ Y ⊆ Rny . Furthermore, we
have matrices B ∈ Rnx×nu , C ∈ Rny×nx and the nonlinear
function f : X → X is assumed to be measurable and
sufficiently smooth. The disturbance wt is an independently
and identically distributed (i.i.d.) noise signal with realiza-
tions w ∼ Pw and the system is initialized at x0 ∈ X. For
simplicity, we have assumed that the output and input enter
in a linear way. This assumption is made without loss of
generality since systems with nonlinear terms g(xt)ut and
h(xt) instead of But and Cxt respectively, can be handled
in a similar fashion.

A (finite) path ω→t := x0, u0, x1, u1, . . . xt of a system
is built up from inputs ut and from realizations xt+1 based
on (1) for a given state xt, input ut and disturbance wt for
each time step t. A control strategy µ := µ0, µ1, µ2, . . .
consists of maps µt(ω→t) that determines an input ut for
each finite path of the model (1). In this work, we are
focusing on control strategies C that can be represented with
finite memory.

Specification. To express formal specifications, we use syn-
tactically co-safe linear temporal logic (scLTL) [9], [31].
This language consists of atomic propositions p1, p2, . . . , pN
that are either true or false. The set of atomic propositions

1In this work, we limit our results to sets in Euclidean spaces, which are
measurable and separable spaces.

is denoted as AP = {p1, . . . , pN} and it defines an alphabet
2AP . Together the set of atomic propositions that are true
form a letter in the alphabet, that is, π ∈ 2AP . A word
π = π0π1π2 . . . is formed by a (possibly infinite) string of
letters with associated suffix πt = πtπt+1πt+2 . . . . It is over
these words that specifications are checked. Such a formal
specification, written as a temporal logic formula, is formed
by combining atomic propositions with logical and temporal
operators as defined in the scLTL syntax.

Definition 1 (scLTL syntax): An scLTL formula φ is defined
over a set of atomic propositions as

φ ::= p | ¬p |φ1 ∧ φ2 |φ1 ∨ φ2 | © φ |φ1 U φ2,

with atomic proposition p ∈ AP . �

The semantics of this syntax can be given for the suffices
πt. An atomic proposition πππt |= p holds if p ∈ πt, while
a negation πππt |= ¬φ holds if πππt 6|= φ. Furthermore, a
conjunction πππt |= φ1 ∧ φ2 holds if both πππt |= φ1 and
πππt |= φ2 are true, while a disjunction πππt |= φ1 ∨ φ2 holds
if either πππt |= φ1 or πππt |= φ2 is true. Also, a next statement
πππt |= ©φ holds if πππt+1 |= φ. Finally, an until statement
πππt |= φ1 U φ2 holds if there exists an i ∈ N such that
πππt+i |= φ2 and for all j ∈ N, 0 ≤ j < i we have πππt+j |= φ1.
Via a labeling function L : Y → 2AP , an output trajectory
y = y0y1y2 . . . of a system (1) is translated to a word
π = L(y0)L(y1)L(y2) . . . . As such a system satisfies a
specification if the generated word π0 = π = L(y) satisfies
the specification, i.e., π0 |= φ.

B. Problem statement

The goal of this work is to automatically develop a
controller C, such that the controlled system M × C sat-
isfies a specification φ. Since we are considering stochastic
systems, we are interested in the satisfaction probability of a
specification, which is the probability that words generated
by the controlled system satisfy a specification, denoted as
P(M ×C |= φ).
Problem. Given model M as in (1), an scLTL specification
φ and a probability p ∈ [0, 1], design a controller C, such
that

P(M ×C |= φ) ≥ p. (2)

We approach this problem by gridding the continuous-
state space after locally approximating the nonlinearity of
the model using a piecewise-affine function in Section III.
This yields a global finite-state abstraction of the original
nonlinear model that is piecewise-affine. To compare the
nonlinear model and the piecewise-affine abstract model, we
locally couple the two models and define a piecewise approx-
imate stochastic simulation relation similar to [11], whose
computation is implicitly based on invariant set computations
based on [28].

III. GLOBAL ABSTRACTION AS A PIECEWISE-AFFINE
SYSTEM

In this section, we discuss the first step in designing a
provably correct controller, namely constructing a piecewise-
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affine abstraction of the nonlinear system in (1).

Local affine approximation of f(xt). In order to handle
the non-linearity of f(xt) in (1), we can use affine functions
to locally approximate it in the bounded set G. Taylor’s The-
orem [27, Sec. 4.10] states that a function f : Rnx → Rnx
that is infinitely differentiable at the point ν can be written
as a power series. For a one-dimensional (1D) function
f : R→ R, this power series equals

f(x)=f(ν)+
f ′(ν)

1!
(x− ν)+. . .+

fNT (ν)

NT !
(x− ν)NT +. . .

=

∞∑
l=0

f (l)(ν)

l!
(x− ν)l. (3)

Here, f (l)(ν) is the l-th derivative of f(x) evaluated at
x = ν. A similar expression can be derived for multivariate
function f : Rnx → Rnx from [32, Sec. 2.4], however, for
brevity this expression is omitted.

Based on (3), the NT th-degree Taylor polynomial of a 1D
function equals

fNT (x) = f(ν) +

NT∑
l=1

f (l)(ν)

l!
(x− ν)l. (4)

Here, NT is a positive integer. From the multivariate version
in [32], we can conclude that if f : Rnx → Rnx is NT + 1
times differentiable on the set G ⊂ Rnx that contains a vector
ν ∈ Rnx in its interior, then the function f(xt) can locally
be approximated by the NT th-order Taylor polynomial, that
is, f(xt) ≈ fNT (xt) for xt ∈ G. In case NT = 1, then the
first-order Taylor polynomial is an affine function

f(xt) ≈ f1(xt) = Axt + a for x ∈ G, (5)

with matrix A = ∇f(ν) and vector a = f(ν)−∇f(ν)ν.
To quantify the accuracy of a general NT th-order approx-

imation, Taylor’s Theorem [27, Sec. 9.6] can be rewritten as
follows

f(x) = fNT (x) +RNT (x). (6)

For a 1D function, we obtain remainder RNT (x) := f(x)−
fNT (x) =

∑∞
l=NT+1

f(l)(ν)
l! (x − ν)l. Following [27, Sec.

9.6] we derive an alternative expression for the remainder
for which an upperbound can be computed.

Proposition 1: Suppose that f : R → R is defined on a
closed interval G with ν ∈ G and f (NT+1) exists on the
same interval. Then for each x ∈ G, there exists a ζ on the
interval between ν and x, such that

RNT (x) =
f (NT+1)(ζ)

(NT + 1)!
(x− ν)NT+1. (7)

The proof of this proposition is based on the derivation
in [27] and [32, Sec. 2.4]. Using Taylor’s inequality [33], an
upperbound of the remainder (7) can be found, which equals

|RNT (x)| ≤ sup
ζ∈G

(∣∣∣∣ fNT+1(ζ)

(NT + 1)!

∣∣∣∣) · |x− ν|NT+1, (8)

and holds for all x ∈ G. The derivation of this upperbound
and its extension to multivariate functions is given in [32,
Sec. 2.4]. By taking the supremum over x ∈ G, an upper-
bound on the approximation error of the NT th-degree Taylor
polynomial, denoted by remainder RNT can be computed.

Next we derive the additional approximation error from
using a first-order Taylor polynomial as in (5) instead of an
NT -order Taylor polynomial. Denote this error by R1(x),
which is equal to R1(x) = fNT (x)−f1(x). For 1D functions,
we use (3) and (4) to derive

R1(x) =

NT∑
l=2

f (l)(ν)

l!
(x− ν)l. (9)

Denote the bounded difference between f(xt) and its
affine approximation Axt + a for x ∈ G by κt ∈ K ⊂
Rnx . In line with (6), we define approximation error κt =
fNT (x) − f1(x) + RNT (x) = R1(x) + RNT (x). Now, we
can conclude the following.

Theorem 1: Given a nonlinear function f(xt) that is suffi-
ciently smooth, there exists a bounded vector κt = R1(x) +
RNT (x), such that f(xt) = Axt + a+ κt for x ∈ G.

The proof of this theorem follows from the extension of
Proposition 1 to higher-dimensional functions as in [32].

Local finite-state abstraction. To synthesize a controller
for a continuous-state system, we further approximate the
behavior of its affine approximation by a finite-state abstract
system. More precisely, we partition the state space X in
a finite number of regions Aj ⊂ X, such that it covers
the complete state space, that is

⋃
j Aj = X and there is

no overlap between the regions Aj ∩ Al = ∅ for j 6= l.
In each region, a representative point x̂j ∈ Aj is chosen.
Together, these points make up the set of abstract states,
x̂ ∈ X̂ = {x̂1, x̂2, . . . , x̂NA}. Besides that, a finite number of
inputs is selected from U to form the abstract input space Û.
Consider the operator Π : X→ X̂ that maps states from the
original state space to the abstract state space. Then locally
the dynamics of the abstract system equal

x̂t+1 = Π(Ax̂t +Bût + a+ ŵt), (10)

with states x̂ ∈ G ⊂ X̂, initial state x̂0 = Π(x0), inputs û ∈
Û, and disturbances ŵ ∈W. The disturbance has realizations
ŵ ∼ Pŵ. Next, we introduce a bounded vector β ∈ B ⊂
Rnx , that pushes the state to its representative point. Then,
with a slight abuse of notation2 the state dynamics of the
local abstract system (10) for x̂ ∈ G satisfy

x̂t+1 ∈ Ax̂t +Bût + a+ ŵt + B.

More precisely, there exist β ∈ B, such that x̂t+1 = Ax̂t +
Bût+a+ ŵt+βt. Now, we can write the state dynamics of
the local abstract system as an affine system whose behavior
is described by

x̂t+1 = Ax̂t +Bût + a+ ŵt + βt for x̂ ∈ G (11)

2Here, the Minkowski sum of the two sets is neglected.
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Global finite-state abstraction. To define a global finite-
state abstraction, we partition the state space X with poly-
topic cells P̂i with i ∈ {1, . . . , NP }, such that

⋃
i P̂i = X

and such that the partitions do not overlap P̂i∩P̂j = ∅ for i 6=
j. For each of the cells, we can now compute a local finite-
state approximation as described in the previous paragraph.
That is, for each P̂i, we compute the abstract dynamics as
(11) with P̂i ⊆ G. As such, we can translate the abstract
system (11) that locally approximates the nonlinear system
(1) to a global piecewise-affine system that approximates the
nonlinear system as

M̂ :

{
x̂t+1 = Aix̂t +Bût+ai+ ŵt+βt for x̂∈ P̂i
ŷ = Cx̂t,

(12)

with states x̂ ∈ X̂ ⊂ X, initial state x̂0, inputs û ∈ Û and
disturbance ŵ ∈W.

IV. PIECEWISE STOCHASTIC SIMULATION RELATION

In this section, we discuss how to quantify the difference
between the original nonlinear stochastic model and the
abstract, global finite-state model obtained via piecewise
affine approximations.

A. Similarity quantification

We need to quantify the similarity between the models (1)
and (12). We start by defining a local metric for the error
dynamics based on coupling the models through its inputs
and stochastic disturbances. First, we couple the inputs u and
û by using an interface function denoted as

Uv : Û× X̂× X→ U. (13)

This computes a control input u given the current input û of
the abstract model and given the state x̂ and x of the abstract
and concrete models, respectively.

Next, we couple the disturbances w and ŵ with respec-
tively realizations w ∼ Pw and ŵ ∼ Pŵ as in [28] using the
following definition based on [34].

Definition 2 (Coupling probability measures): A coupling
of probability measures Pw and Pŵ on the same measurable
space (W,B(W)) is any probability measure W on the
product measurable space (W × W,B(W × W)) whose
marginals are Pw and Pŵ, that is,

W(Â×W) = Pŵ(Â) for all Â ∈ B(W)

W(W×A) = Pw(A) for all A ∈ B(W).

We can trivially extend this definition to Borel measurable
stochastic coupling kernels

W : Û× X̂× X→ P(W2). (14)

Now, we can introduce a simulation relation to quantify
the similarity between the stochastic models M (1) and M̂
(12) based on [11].

Definition 3: ((ε,δ)-stochastic simulation relation): Let
stochastic models M and M̂ with metric output space

(Y, dY), an interface function Uv (13), and a Borel mea-
surable stochastic kernel W (14) be given. If there exists a
measurable relation R ⊆ X̂ × X, with (x̂0, x0) ∈ R, and
such that

1) ∀(x̂, x) ∈ R : dY(ŷ, y) ≤ ε, and
2) ∀(x̂, x) ∈ R, ∀û ∈ Û : (x̂+, x+) ∈ R holds with

probability at least 1− δ(x̂), with δ : X̂→ [0, 1].
then M̂ is (ε, δ)-stochastically simulated by M , and this
simulation relation is denoted as M̂ �δε M .

We refer to ε as the (metric) output deviation and to δ as
the probabilistic or stochastic deviation function. Note that
unlike [11] the stochastic deviation is not uniform for the
whole state space. Instead it is introduced as a function δ :
X̂→ [0, 1] that depends on the abstract state x̂. If δ(x̂) is a
piecewise constant function, then we refer to the simulation
relation as a piecewise stochastic simulation relation. We
have defined a measure to quantify the difference between
two models on a global level, that is, over the full state space.
The question is now how we can compute it based on the
given local piecewise-affine structure of the abstractions.

B. Piecewise similarity quantification

Consider a simulation relation given as

R :=
{

(x̂, x) ∈ X̂× X | ||x− x̂||D ≤ ε
}
, (15)

with a weighting matrix D such that the first condition of
Def. 3 is satisfied, which reduces to the requirement that

C>C � D. (16)

In this subsection, we will use this relation (15) to show
that a global (ε,δ)-stochastic simulation relation can be
efficiently computed with a piecewise constant probability
deviation function δ : X̂→ [0, 1] defined based on the state
partitioning P̂i

δ(x̂) = δi if x̂ ∈ P̂i.

The function δ assigns a constant local probability deviation
to each partition in the abstract state space X̂ based on a
local similarity quantification that is derived using the local
stochastic error dynamics.

Local stochastic error dynamics. Consider a local interface
function ut = Uvi(ût, x̂t, xt) as

ut = ût +Kf,i(xt − x̂t), (17)

with feedback matrix Kf,i ∈ Rnu×nx and a local stochastic
kernel Wi, assigning to each (u, x̂, x) a probability measure

Wi : Û× P̂i × X→ P(W2). (18)

We have that

x̂t+1 = Aix̂t +Bût + ai + ŵt + βt for x̂ ∈ P̂i

furthermore if ‖x− x̂‖D ≤ ε then there exists a κt such that

xt+1 = Aixt +But + ai + wt + κt with κt ∈ Ki.
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Given that xt belongs to Pi defined as

Pi := {x ∈ X|∃x̂ ∈ P̂i : ‖x− x̂‖D ≤ ε}.

Following the previous section, the set Ki is defined as

Ki := sup
x∈Pi

(R1(x) +RNT (x)) ,

with R1(x) as in (9) and RNT as in (7) with upperbound
(8).

If the states satisfy x̂t ∈ P̂i and xt ∈ Pi, then the error
dynamics of x∆t := xt − x̂t equal

x∆t+1 = (Ai +BKf,i)x∆t + (wt − ŵt) + κt − βt (19)

with κ ∈ Ki and β ∈ B and with (ŵt, wt) ∼ Wi.

Local coupling and interface functions with δ = δi.
Following [28], we make sure that the second condition
of Def. 3 is satisfied by finding a global invariant set
{x∆ | ‖x∆‖D ≤ ε} parameterized with a global D for the
error dynamics (19). Together with D, we have to compute
an optimal local interface function (17) and coupling (18)
for all partitions P̂i, with i ∈ {1, . . . Np}. More precisely,
we design Wi and Kf,i such that the probability 1− δi with
which ‖x∆t+1‖D ≤ ε holds is maximized. To this end, we
consider a local coupling for which ŵ = w + Fi(x − x̂)
holds with probability 1− δi. The use of the coupling term
Fi introduced in [28] reduces the complexity of the design
of Wi as it allows us to write the design problem as a set
of implications or parameterized matrix inequalities. That is,
a relation between this term and the probability deviation δi
can been derived as upperbound ||Fi(x− x̂)|| ≤ ri with

ri :=

∣∣∣∣2 idf

(
1− δi

2

)∣∣∣∣ . (20)

Here, idf denotes the inverse distribution function of a
Gaussian distribution N (0, I).

As can be concluded from the error dynamics in (19),
together with the coupling, the interface function can be used
to further compensate for the error in the state by computing
a suitable feedback-term Kf,i. To make sure that the bound
u ∈ U is satisfied, we reduce Û accordingly and add an
upperbound on the feedback-term as ||Kf,i(x− x̂)|| ≤ uu.

Taken together, we can conclude the following.

Lemma 1 (Piecewise requirements): Consider stochastic
models M (1) and M̂ (12) for which a simulation relation
R (15) with weighting matrix D satisfying (16) is given. If
there exist matrices Fi, and Kf,i such that the following
implications are satisfied for a given δ(x̂)

x>∆Dx∆ ≤ ε2 =⇒


x>∆F

>
i Fix∆ ≤ r2

i

x>∆K
>
f,iKf,ix∆ ≤ u2

u

x>∆t+1Dx∆t+1 ≤ ε2,
(21)

with x∆t+1 in (19) and ri in (20), then there exists coupling
kernels Wi and interfaces Uvi such that

∀(x̂, x) ∈ P̂i × X,∀û ∈ Û : (x̂+, x+) ∈ R (22)

holds with probability 1− δi for all P̂i, with i ∈ {1, . . . Np}
and with

⋃
i P̂i = X̂.

The first and second implication in (21) are sufficient
conditions for the bounds on respectively the coupling com-
pensator term and the feedback-term Kf,i(x − x̂). The last
implication is a sufficient condition for a local version of the
second condition of a (ε, δ)-stochastic simulation relation as
in Def. 3. The full proof of this Lemma is omitted, since
it follows the proof of Theorem 9 in [28]. Furthermore, in
[28], it is shown how to write such implications (21) as
parameterized matrix inequalities for efficient computation.

From local to global similarity quantification. To obtain a
global similarity quantification, we define a global piecewise
stochastic kernel W and a global interface function. Since
Û× P̂i×X for i = 1, . . . , NP is a partitioning of Û× X̂×X
we can use the local stochastic coupling kernel Wi : Û ×
P̂i × X→ P(W2) for i = 1, . . . , NP to compute the global
stochastic coupling kernel W : Û× X̂× X→ P(W2) as

W(· | û, x̂, x) =Wi(· | û, x̂, x) if x̂ ∈ P̂i. (23)

Furthermore, the interface function can similarly be com-
posed as

Uv(ût, x̂t, xt) = Uvi(ût, x̂t, xt) if x̂ ∈ P̂i. (24)

We can now show that these functions constitute to a
(ε, δ)-stochastic simulation relation for the given simulation
relation.

Theorem 2 (Piecewise stochastic similarity): Let stochastic
models M (1) and M̂ (12) be given. Then the interface
function Uv (24) and the global Borel measurable stochastic
kernel W (23) computed for the simulation relation (15)
based on (21) define an (ε, δ)-stochastic simulation relation
in a piecewise manner as given in Def. 3 if

• it holds that (x̂0, x0) ∈ R, and if
• the simulation relation satisfies matrix inequality (16).

Proof. The proof builds on Lemma 1, and can be sketched
as follows. The first condition of Def. 3 holds by choosing
matrix D, such that (16) holds. This is proven in the proof of
Theorem 9 in [28]. Lemma 1 shows that if (21) is satisfied
then a local stochastic kernel Wi as in (18) exists, such that
(22) holds with probability 1− δi. By choosing the interface
function Uv as (24), and by choosing the global stochastic
kernel as in (23) the second condition in Def. 3 is satisfied.

V. TEMPORAL LOGIC CONTROL

In this section, we discuss how to compute the satisfaction
probability of temporal logic specifications based on the
dynamic programming mappings from [29]. Next, we show
how to apply the method from this paper to design a provably
correct controller for a nonlinear stochastic case study and
discuss the results.
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A. Dynamic programming

In correct-by-design control synthesis, an scLTL spec-
ification φ can be written as a deterministic finite-state
automaton (DFA), that is characterized by the tuple Aφ =
{Q, q0,Σ, τA, F} [9]. Here, the set of states is denoted by Q
and initialized by the initial state q0. The input alphabet and
transition function are respectively denoted by Σ = 2AP and
τA : Q × Σ → Q. Finally, F denotes the set of accepting
states. The word π satisfies the specification φ, that is π |= φ,
as long as the the word π is accepted by the DFA Aφ.
This means that there exists a trajectory q0, q1, . . . , qf with
qf ∈ F starting at q0 and evolving according to qt+1 =
τA(qt, πt). By analyzing the product composition between
the system M and the specification DFA Aφ, denoted as
M ⊗ Aφ, we can compute the satisfaction probability. The
composition M⊗Aφ consists of states (xt, qt) ∈ X×Q. For
a given input ut, it evolves from (xt, qt) to (xt+1, qt+1) by
following the stochastic transition from xt to xt+1 in (1) and
from qt to qt+1 = τA(qt, L(Cxt)). Therefore, computing the
satisfaction probability is equivalent to solving a reachability
problem of the composition M⊗Aφ, which can be written as
a dynamic program. With a slight abuse of notation we will
also refer to the stationary policy of this composed system
as µ : X̂×Q→ Û.

We use the abstract model to compute the satisfaction
probability, since this is not possible for the original model
due to its continuous states. The satisfaction probability with
policy µ in the time horizon [1, . . . , N ] is expressed using the
value function V µN (x̂, q) : X̂×Q→ [0, 1]. This is equivalent
to the probability that the trajectory generated by applying
µ to M ⊗ Aφ and starting at (x, q) reaches the target set
F within this time horizon. The value function V µN (x̂, q) is
defined as

V µN (x̂, q) := Eµ
(

max
0≤t≤N

1F (qt)|(x̂0, q0)

)
,

with indicator function 1F that is equal to 1 if q ∈ F
and 0 otherwise. The value function can also be computed
recursively for a policy µi = (µi+1, . . . , µN ) with horizon
N − i as follows

V
µk−1

N−k+1(x̂, q) = Tµk(V
µk
N−k)(x̂, q)

initialized with V0 ≡ 0. Here, the operator Tµk(·) is defined
as follows

Tµk(V )(x̂, q) := Eµk(max
{

1F (q+), V (x̂+, q+)
}

),

with input DFA transitions q+ = τAφ(q, L(Cx+)). For
a stationary policy µ, the infinite-horizon value function
is computed as V µ∞ = limN→∞(Tµ)NV0 initialized with
V0 ≡ 0. The policy-optimal converged value function V ∗∞ is
computed with the operator T∗(·) := supµT

µ(·). The cor-
responding satisfaction probability can now be computed as
Pµ := max(1F (q̄0, V

∗
∞(x0, q̄0))) with q̄0 = τ(q0, L(Cx0)).

To cope with the output deviation ε and with probability
deviations described by the function δ(x̂), we define a robust

dynamic programming mapping similar to [11], as

Tµk
ε,δ(V )(x̂, q) :=

L
(
Eµ( min

q+∈Q+
max

{
1F (q+), V (x̂+, q+)

}
)− δ(x̂)

)
,

with L : R→ [0, 1] a truncation function defined as L(·) :=
min(1,max(0, ·)) and with

Q+(q, ŷ+) :=
{
τA(q, L(y+)) | ||y+ − ŷ+|| ≤ ε

}
.

We can now compute the robust satisfaction probability
by considering the first time instance based on x0, that is,

Rµ := max(1F (q̄0, V
µ
∞(x0, q̄0)))

with q̄0 = τA(q0, L(Cx0)). This probability is robust in the
sense that it gives a lower-bound on the probability stated in
(2), i.e., P(M ×C |= φ) ≥ Rε,δ(M̂ × Ĉ |= φ).

B. Case study

We have applied this method to a forced, stochastically
perturbed Van der Pol oscillator with state xt = [x1,t, x2,t]

>

and state dynamics3

x1t+1 = x1t + x2tτ + w1t

x2t+1 = f2(xt) + ut + w2t,

with nonlinear function

f2(xt) = x2t + (−x1t + (1− x1
2
t )x2t)τ).

Here, τ = 0.1 is the sampling time and w ∼ N (0, 0.2I2)
is a Gaussian disturbance. Furthermore, we have considered
states x ∈ X = [−3, 3]2, input u ∈ [−1, 1], a safe region
P1 = X and a goal region P2 = {(x1, x2)> ∈ R2 | −1.2 ≤
x1 ≤ −0.9,−2.9 ≤ x2 ≤ −2}. The goal of the controller is
to guarantee that the system reaches the goal region, while
staying in the safe region. This can be written using scLTL
as φ = P1 ∪ P2.

We obtained an abstract model with state dynamics as
in (10) by partitioning the state space with square regions
of width 0.01 leading to4 β ∈ B = [−0.01, 0.01]2 and
with û ∈ Û = [−0.6,−0.3, 0, 0.3, 0.6] leaving some input
action for the feedback part, namely −0.4 ≤ Kf,i(x− x̂) ≤
0.4. Next, we performed a piecewise-affine approximation
by using 1600 equally sized square partitions to obtain
a piecewise-affine abstraction as in (12). We subsequently
selected ε = 0.08 and computed a corresponding probability
deviation function δ(x̂) such that the implications in (21)
are satisfied. We computed the global stochastic kernel W
based on (23) and interface function Uv as in (24) and used
Theorem 2 to obtain an (ε, δ)-stochastic simulation relation.
Finally, we used the dynamic programming mappings as
discussed in Section V-A to compute a robust controller
C, while simultaneously computing the robust satisfaction

3Here, the first suffix of x1t refers to the dimension, while the second
suffix t indicates the time.

4Normally, you would get β ∈ B = [−0.005, 0.005]2, however, our
Matlab implementation uses an efficient tensor-based computation that
leads to a bigger set for β.
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(a) Probability deviation function δ(x̂) (b) Satisfaction probability Rε,δ(M̂ × Ĉ |= φ)

Fig. 1: Probability deviation function for the abstract state space (left) and robust satisfaction probability (right) when starting
at initial state x0 = [x1(0), x2(0)]>.

probability. The probability deviation function δ(x̂) and the
satisfaction probability Rε,δ(M̂×Ĉ |= φ) are given in Fig. 1
and are computed in Matlab in approximately 82 minutes,
while using approximately 64Mb memory. More specifically,
60% of the computation time is spent on gridding the state
space and 35% on computing the parametrized matrix in-
equalities such that the implications in Lemma 1 are satisfied.
Furthermore, the memory usage is computed based on the
sizes of the variables stored in the workspace.

Comparison to available software tools. Similar case stud-
ies have been presented in [13], [35], where [13] considers
an autonomous Van der Pol oscillator and [35] combines
the input with a multiplicative noise term. However, the
results presented in [13], [35] are limited to verification
or a reachability analysis instead of the control synthesis
performed in this paper.

Furthermore, we have chosen a more stochastic variant
of the case study with a Gaussian disturbance with vari-
ance 0.2I2 instead of an uniform distribution with support
[−0.02, 0.02] × [−0.02, 0.02] as used in [13], [35]. The
unbounded nature of the Gaussian disturbance contributes
significantly to the difficulty of this case study.

VI. CONCLUSIONS

Concluding, to the best of our knowledge this paper is the
first to describe a control synthesis method for general tem-
poral logic control that uses piecewise-affine approximations
of stochastic nonlinear models. By using a state-dependent
probability deviation, a lower-bound on the satisfaction prob-
ability is computed as shown in the case study. For future
work, more advanced piecewise-affine approximations, such
as [24]–[26] can be applied and a more detailed analysis of
the results will be investigated. Besides that, the computation
time of solving the parameterized linear matrix inequalities
in our Matlab implementation should be decreased as well.
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